
 143

Ada User Journal Volume 38, Number 3, September 2017

Using GtkAda in Practice

Ahlan Marriott, Urs Maurer

White Elephant GmbH, Beckengässchen 1, 8200 Schaffhausen, Switzerland; email: software@white-elephant.ch

Abstract

This article is an extract from the industrial
presentation “Astronomical Ada” which was given at
the 2017 Ada-Europe conference in Vienna.

The presentation was an experience report on the
problems we encountered getting a program written
entirely in Ada to work on three popular operating
systems: Microsoft Windows (XP and later), Linux
(Ubuntu Tahr) and OSX (Sierra).

The main problem we had concerned the
implementation of the Graphical User Interface
(GUI). This article describes our work using GtkAda.

Keywords: Gtk, GtkAda, GUI

1 Introduction

The industrial presentation was called “Astronomical Ada”

because the program in question controls astronomical

telescopes.

1.1 Telescopes

The simplest of telescopes have no motor. An object is

viewed simply by pointing the telescope at it. However,

due to the rotation of the earth, the viewed object, unless

the telescope is continually adjusted, will gradually drift

out of view.

To compensate for this, a fixed speed motor can be

attached such that when aligned with the Earth’s axis it

effectively cancels out the Earth’s rotation.

However many interesting objects appear to move relative

to the Earth, for example satellites, comets and the planets.

To track this type of object the telescope needs to have two

motors and a system to control them.

Using two motors the control system can position the

telescope to view anywhere in the night sky.

Our Ada program (SkyTrack) is one such program. It can

drive the motors to position the telescope onto any given

object from within its extensive database and thereafter

follow the object either by calculating its path or, in the

case of satellites and comets, follow the object according to

a downloaded pre-calculated path.

1.2 Graphical User Interface

The GUI is used to instruct the program where to position

the telescope and what astronomical object it should

follow.

The screen shot shown as figure 1 shows the SkyTrack

program positioning the telescope on Mars. An object

selected from the Favourites catalogue.

The GUI was implemented using a package that provides a

simple interface to create and manipulate common

graphical objects. It was originally implemented using

direct calls to the Windows API so, at least in theory; all

we had to do was re-implement the implementation.

Figure 1 - SkyTrack GUI

144 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

We chose to re-implement the GUI based on Gtk because

both Gtk and Ada bindings to Gtk were available on all the

designated target platforms.

GtkAda are Ada bindings to Gtk that are available from

AdaCore at their web site libre.adacore.com/download.

Unfortunately, by themselves, these are not sufficient to

implement a GUI of any complexity. A lot of extra code

has to be written in order that Gtk can actually be used.

This article describes the code we developed in order to use

GtkAda.

2 Restrictions

The Windows API is not task safe. By which we mean that

although the Windows SendMessage and PostMessage

procedures are thread-safe, the API generally requires the

passing of pointers to external objects. This is unsafe

because the referenced object must be kept until the

message is processed. Also the object must be locked

against concurrent access because Windows supports

message loops in different threads and the sending/posting

of messages across thread borders.

Therefore in our original Windows based implementation

we used protected objects to prevent concurrent API calls

and an Ada task to process the Windows message loop.

However Gtk has the even more dramatic restriction that all

Gtk calls must be executed from the same thread.

This required us to develop a system that provided our GUI

with a simple and reliable means to make Gtk calls whilst

at the same time guaranteeing that they were executed by

the same thread.

In our implementation a dedicated thread is provided to

process all the Gtk calls. The GUI package makes calls to

this thread to request that it execute Gtk calls on its behalf.

In this arrangement, the GUI can be considered to be the

client and the dedicated thread, the Gtk server.

We identified two types of Gtk request that the client may

make: Synchronous and Asynchronous.

A synchronous request is a request made by the Gtk client

to the Gtk server that expects the server to return a value.

For example retrieving the contents of an edit box.

An asynchronous request is a request made by the Gtk

client to the Gtk server that does not return a value. For

example writing a row to a list view.

3 Synchronous requests

The synchronous interface consists of an abstract type and

an abstract procedure based on this type.

type Request_Data is abstract tagged null record;

procedure Synchronous_Service (Data : in out

 Request_Data) is abstract;

The Gtk client makes a synchronous request to the Gtk

server by extending the abstract type to include data that is

to be sent to the server as well as the data that the client

expects to receive from the server.

The following is an example demonstrating how to

determine whether or not a specified check box is checked.

First the abstract type Request_Data is extended to make a

new type Check_Enquiry_Data. This is defined to be a

record containing two fields: Check_Box to specify the

check box to be enquired and Is_Checked to hold the result

of the enquiry.

type Check_Enquiry_Data is new Request_Data with

record

 Check_Box : Gtk.Check_Button.Gtk_Check_Button;

 Is_Checked : Boolean;

end record;

The abstract procedure Synchronous_Service then has to be

defined for the extended type. This procedure contains the

code to be executed by the server on behalf of the client.

overriding procedure Synchronous_Service

 (Data : in out Check_Enquiry_Data) is

begin

 Data.Is_Checked := Data.Check_Box.Get_Active;

end Synchronous_Service;

The synchronisation and passing of data between the client

and the server is implemented using a protected type that

has two entries, one for the client to call and another that is

used to block the client from immediately returning. The

protected type also has a state and a means of retaining

access to the client data.

type Request_Data_Ptr is access all

 Request_Data'class;

protected Gateway is

 entry Synchronous_Request (Data : in out

 Request_Data'class);

private

 entry Serviced (Unused_Data : in out

 Request_Data'class);

 State : Gateway_State := Idle;

 Data : Request_Data_Ptr;

end Gateway;

In order that the client defined synchronous procedure is

executed in the context of the server thread, the client needs

to create a variable of the extended type, initialise it with

the data required by the synchronous procedure and then

rendezvous with the server.

At the rendezvous with the server the data will be passed to

the server and the client blocked until the server has

executed the synchronous procedure associated with the

data.

In the following example the client function Is_Checked

takes a check box as its only parameter. It puts this into a

variable of type Check_Enquiry_Data that is an extension

of Request_Data (see previously). The data is then passed

to the Gtk server by making a rendezvous at the entry

Synchronous_Request. When it is released from the entry it

http://www.libre.adacore.com/download

A. Marr iott , U. Maurer 145

Ada User Journal Volume 38, Number 3, September 2017

obtains the result from the variable and returns it to the

caller.

function Is_Checked (The_Check_Box : Check_Box)

return Boolean is

 Data : Check_Enquiry_Data := (Request_Data with

 Check_Box => The_Check_Box.The_Box,

 Is_Checked => False);

begin

 Gateway.Synchronous_Request (Data);

 return Data.Is_Checked;

end Is_Checked;

The entry Synchronous_Request within the protected type

Gateway is implemented as follows:

entry Synchronous_Request (Data : in out

 Request_Data'class)

when State = Idle is

begin

 Gateway.Data := Data'unchecked_access;

 State := Busy;

 requeue Serviced;

end Synchronous_Request;

entry Serviced (Unused_Data : in out

 Request_Data'class)

when State = Ready is

begin

 State := Idle;

end Serviced;

Callers to Synchronous_Request are blocked until the

server is ready to process the request by placing a guard on

the entry, which is opened when the gateway state is set to

Idle.

Within the entry a pointer is made to the data passed as the

entry’s parameter and the state set to Busy.

Finally it makes a call to the entry Serviced that effectively

blocks the call from returning until the state is set to Ready.

In this way the client waits for the server to be Idle, sets up

a pointer to the data, indicates that the data is ready and

then waits for the server to indicate that it has processed the

data.

Note that the requeue prevents the entry’s parameter from

being destroyed. Therefore until the state is set to Ready,

the pointer Gateway.Data remains valid.

3.1 Synchronous Server

Making Gtk calls do not, by themselves, result in anything

happening. For something to happen a thread must execute

Gtk.Main.Main_Iteration in a loop.

loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

end loop;

Consequently a minimum Gtk server must do this as well

as process the synchronous requests made by the Gtk

clients.

We can do this by modifying the Gtk Main_Iteration loop

so that Main_Iteration is only called whilst there are Gtk

events that need to be processed and then making a

selective wait with timeout to check if there are any

synchronous requests pending.

The code to determine whether there are any pending

requests, to obtain the request and to signal that the request

has been processed, is implemented by two entries and one

function as part of the Gateway protected type.

protected Gateway is

 entry Check;

 entry Complete_Synchronous_Service;

end Gateway;

function Synchronous_Data return Request_Data_Ptr;

The entry Check blocks until the state is set to Busy. This

happens after the client has entered Synchronous_Request

and has made a pointer to the request data.

entry Check

when (State = Busy) is

begin

 null;

end Check;

The function Synchronous_Data can be used to access the

request data.

function Synchronous_Data return Request_Data_Ptr

is

begin

 return Gateway.Data;

end Synchronous_Data;

The entry Complete_Synchronous_Service sets the state to

Ready which frees the client blocked on the requeue at the

entry Serviced.

procedure Complete_Synchronous_Service is

begin

 State := Ready;

end Complete_Synchronous_Service;

A Gtk server for synchronous requests can therefore be

implemented as follows:

loop

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 select

 Gateway.Check;

 Synchronous_Service

 (Gateway.Synchronous_Data.all);

 Gateway.Complete_Synchronous_Service;

 or

 delay The_Period;

 end select;

end loop;

The server processes any pending Gtk events then checks

for any client requests. If there aren’t any within a short

146 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

period of time (we typically wait for 50ms) the process is

repeated.

If Gateway.Check is taken then the function

Synchronous_Data is called to obtain the request data and

then the client defined synchronous procedure associated

with the data type is called. After which the procedure

Complete_Synchronous_Service is called to release the

client.

4 Asynchronous calls

We could have left it at that. We could have implemented

our entire application by processing all our Gtk calls as

synchronous requests. However if we had done so, the

performance would have been very poor.

This is because the task switch between the client and the

server and then back again are both relatively expensive.

Using the synchronous mechanism to place a large amount

of data into a list view is noticeably and unacceptably slow.

For the sake of efficiency we needed to implement an

asynchronous method whereby the client can issue requests

to the server to be processed at some future time. The client

does not wait for the server to process these requests and

therefore does not have to incur the penalty of the task

switch back and forth to the server.

The asynchronous method is very similar to the

synchronous method described previously, in so far that it

relies on an abstract type that is extended to contain the

request data and a procedure that overrides the type’s

abstract procedure.

It differs from the synchronous method in that instead of

synchronising with the server it simply places the request

into a protected queue ready for the server to process.

Unlike the synchronous method the client is not blocked

and so is immediately free to make further requests. In the

example of filling a list view with data, the client can first

place all the requests into the queue and then, when this is

done, the server can process the whole of the queue.

Having a queue of work to process avoids having to

continually switch between client and server and is

noticeably faster.

The asynchronous interface consists of an abstract type and

an abstract procedure based on this type.

type Message_Data is abstract tagged null record;

procedure Asynchronous_Service

 (Message : Message_Data) is abstract;

The Gtk client makes an asynchronous request to the Gtk

server by extending the abstract type to include data that is

to be sent to the server.

The following is an example demonstrating how to set a

specified check box.

First the abstract type Message_Data is extended to make a

new type Set_Check_Data. This is defined to be a record

containing the field Check_Box which is used to specify the

check box to be set.

type Set_Check_Data is new Message_Data with

record

 Check_Box : Gtk.Check_Button.Gtk_Check_Button;

end record;

The abstract procedure Asynchronous_Service then has to

be defined for the extended type. This procedure contains

the code to be executed by the server on behalf of the

client.

overriding procedure Asynchronous_Service

 (Data : in out Set_Check_Data) is

begin

 Data.Check_Box.Set_Active (True);

end Asynchronous_Service;

The data is placed into the queue for the server to process

using a protected type that has an entry and an indefinite

doubly linked list that is used to implement the queue of

requests.

package Message_List is new

 Ada.Containers.Indefinite_Doubly_Linked_Lists

 (Message_Data'class);

protected Gateway is

 procedure Asynchronous_Request (Data : in

 Message_Data'class);

private

 The_Messages : Message_List.Item;

end Gateway;

In order that the client defined asynchronous procedure is

executed in the context of the server task, the client needs

to create a variable of the extended type, initialise it with

the data required by the asynchronous procedure and then

place the data into the server queue.

In the following example, the client procedure Set takes as

its only parameter the check box that should be set.

It copies the parameter into a variable of type

Set_Check_Data that is an extension of Message_Data (see

previously). The data is then placed into the Gtk server

queue by making a call to the entry Asynchronous_Request.

procedure Set (The_Check_Box :

 Gtk.Check_Button.Gtk_Check_Button)

is

 Data : Set_Check_Data

 := (Message_Data with

 Check_Box => The_Check_Box);

begin

 Gateway.Asynchronous_Request (Data);

end Is_Checked;

The entry Asynchronous_Request within the protected type

Gateway is implemented as follows:

protected body Gateway is

 procedure Asynchronous_Request (Data : in

 Message_Data'class) is

 begin

 The_Messages.Append (Data);

 end Asynchronous_Request;

end Gateway;

A. Marr iott , U. Maurer 147

Ada User Journal Volume 38, Number 3, September 2017

4.1 Asynchronous Server

In order to process asynchronous requests, in addition to

synchronous requests, the server needs to be extended. The

Check entry needs to block until either a synchronous

request is made or the queue of asynchronous work

becomes not empty and for it to return what type of request

is available.

type Data_Type is (Synchronous, Asynchronous);

entry Check (The_Data_Type : out Data_Type)

when not (State = Busy) or else

 (The_Messages.Count > 0) is

begin

 If The_Messages.Count > 0 then

 The_Data_Type := Asynchronous;

 elsif State = Busy then

 The_Data_Type := Synchronous;

 end if;

end Check;

The main processing loop can then use the request type to

decide how to process the request.

loop

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 select

 Gateway.Check (The_Data_Type);

 case The_Data_Type is

 when Synchronous =>

 Synchronous_Service

 (Gateway.Synchronous_Data.all);

 Gateway.Complete_Synchronous_Service;

 when Asynchronous =>

 Asynchronous_Service

 (Gateway.Next_Message);

 Gateway.Delete_First_Message;

 end case;

 or

 delay The_Period;

 end select;

end loop;

The function Next_Message is a function to return the

asynchronous request at the head of the asynchronous

request queue and the procedure Delete_First_Message

removes it from the queue.

function Next_Message return Message_Data'class is

 The_Message : constant Message_Data'class :=

 The_Messages.First_Element;

begin

 return The_Message;

end Next_Message;

procedure Delete_First_Message is

begin

 The_Messages.Delete_First;

end Delete_First_Message;

5 Callbacks

Most GUI implementations will require some form of

callback in order that they can be notified of user

interaction. Some callbacks need only identify the object

(for example the button when a button is clicked) whilst

others will require additional information (for example

which row within a list view has been clicked).

GtkAda provides bindings to the Gtk mechanism however

it is important to realise that only a very limited amount of

work should be performed within these callbacks otherwise

the responsiveness of the windowing system will be

adversely affected.

To prevent this type of degradation, the Gtk callbacks in

our GUI implementation are kept as simple as possible –

any large amount of work is placed into a protected queue

to be processed by a separate dedicated task.

For example, the Gtk callback called as a result of clicking

on a button would add an action to the callback handler

queue. The callback handler task processing this queue

eventually processes the action; which invariably results in

a routine being called that does whatever work is actually

required.

By delegating this work to another task, the Gtk server task

is released to service Gtk requests (perhaps generated as a

result of the button being clicked) as well as processing the

main Gtk event loop, thereby keeping windows and mouse

tracking up to date.

Although the provision of this mechanism is not a

requirement for a functional Gtk server, we found it

convenient if the mechanism is provided in the same

package as the server.

For example, causing The_Action_Routine to be executed

whenever The_Button is clicked could be coded as follows.

type Action_Routine is access procedure;

package Action_Callback is new

 Gtk.Handlers.User_Callback (

 Widget_Type => Gtk.Widget.Gtk_Widget_Record,

 User_Type => Action_Routine);

procedure Action_Handler (

 Unused : access

 Gtk.Widget.Gtk_Widget_Record'class;

 The_Action_Routine : Action_Routine) is

begin

 Callback_Handling.Put (The_Action_Routine);

end Action_Handler;

Gtk.Button.Gtk_New (The_Button, “Button”);

Action_Callback.Connect (

 The_Button,

 "clicked",

 Action_Callback.To_Marshaller(

 Action_Handler'access),

 The_Action_Routine);

When The_Button is clicked, Gtk calls the procedure

Action_Handler in the context of the Gtk server thread. All

148 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

this does is place The_Action_Routine into the callback

queue.

A dedicated task Callback_Handler created by the Gtk

server serially executes procedures placed in this queue.

This can be coded as follows:

package Callback_List is new

 Definite_Doubly_Linked_Lists (Action_Routine);

protected Callback_Handling is

 procedure Put (The_Action : Action_Routine);

 procedure Finish;

 entry Get (The_Callback : out Action_Routine);

private

 Is_Enabled : Boolean := True;

 The_Callback_List : Callback_List.Item;

end Callback_Handling;

protected body Callback_Handling is

 procedure Put (The_Action : Action_Routine) is

 begin

 if Is_Enabled then

 The_Callback_List.Append (The_Callback);

 end if;

 end Put;

 procedure Finish is

 begin

 Is_Enabled := False;

 end Finish;

 entry Get (The_Routine : out Action_Routine) when

 (not Is_Enabled) or (The_Callback_List.Count > 0)

 is

 begin

 if Is_Enabled then

 The_Routine :=

 The_Callback_List.First_Element;

 The_Callback_List.Delete_First;

 else

 The_ Routine := null;

 end if;

 end Get;

end Callback_Handling;

task body Callback_Handler is

 The_Routine : Action_Routine;

begin

 loop

 Callback_Handling.Get (The_ Routine);

 exit when The_ Routine = null;

 The_Routine.all;

 end loop;

 The_Termination_Handler.Finalize;

end Callback_Handler;

5.1 Qualified callbacks

A qualified callback is a variation on the callback idea. It

works in a similar fashion as the simple callback described

previously but in addition returns client supplied data. This

type of callback is used when it is insufficient just knowing

which widget has been the subject of an event. For example

when the row of a list view has been clicked the application

invariably wants to know which row was clicked.

To support qualified callbacks we need to base the callback

queue on a record that may contain different information

depending on the type of the callback.

type Callback is (Simple, Qualified);

type Quaified_Routine is

 access procedure (Item : Information);

type Callback_Data (The_Callback : Callback := Action)

is record

 case The_Callback is

 when Simple =>

 Simple_Action : Action_Routine;

 when Qualified =>

 Qualified_Action : Qualified_Routine;

 The_Information : Information;

 end case;

end record;

package Callback_List is new

Definite_Doubly_Linked_Lists (Callback_Data);

and the protected type Callback_Handling extended

accordingly.

protected Callback_Handling is

 procedure Put (The_Action : Action_Routine);

 procedure Put (The_Action : Qualified_Routine;

 The_Information : Information);

 procedure Finish;

 entry Get (The_Callback : out Callback_Data);

end Callback_Handling;

task body Callback_Handler is

 The_Callback : Callback_Data;

begin

 loop

 Callback_Handling.Get (The_Callback);

 case The_Callback.The_Callback is

 when Simple =>

 exit when The_Callback.Simple_Action = null;

 The_Callback.Simple_Action.all;

 when Qualified =>

 The_Callback.Qualified_Action.all

 (The_Callback.The_Information);

 end case;

 end loop;

 The_Termination_Handler.Finalize;

end Callback_Handler;

The following is an example of how this extended callback

mechanism could be used to indicate which row of a list

view has been clicked.

package Qualified_Callback is new

Gtk.Handlers.User_Callback

(Gtk.Widget.Gtk_Widget_Record, Qualified_Routine);

Gtk.Tree_View.Gtk_New (The_View);

Qualified_Callback.Connect (

 The_View,

 "row-activated",

 Qualified_Callback.To_Marshaller

A. Marr iott , U. Maurer 149

Ada User Journal Volume 38, Number 3, September 2017

 (List_Click_Handler'access),

 The_Routine);

The procedure List_Click_Handler and the client supplied

qualified routine are connected to the row activation event

of the list view.

When the row of the list view is clicked, the procedure

List_Click_Handler is called with both the list view widget

and the user supplied qualified routine passed as

parameters.

The List_Click_Handler procedure can then retrieve the

information associated with the row that has been activated

and then schedule a callback with this information.

procedure List_Click_Handler (

 Widget : access

 Gtk.Widget.Gtk_Widget_Record'class;

 The_Routine : Qualified_Routine)

is

 Iter : Gtk.Tree_Model.Gtk_Tree_Iter;

 Model : Gtk.Tree_Model.Gtk_Tree_Model;

 Value : Glib.Values.GValue;

begin

 Gtk.Tree_Selection.Get_Selected

 (Gtk.Tree_View.Get_Selection

 (Gtk.Tree_View.Gtk_Tree_View(Widget)),

 Model, Iter);

 Gtk.Tree_Model.Get_Value (Model, Iter, 0, Value);

 Callback_Handling.Put (The_Routine,

 Information(Glib.Values.Get_Ulong(Value)));

end List_Click_Handler;

6 Closing the server

As previously described, the Gtk server sits in a loop either

executing Gtk events or processing synchronous or

asynchronous requests. However this is insufficient, we

need a method to exit the loop and return control back to

the thread that called the server procedure.

This is achieved by calling the Gateway entry Quit. The

Gateway is the protected type used by clients to make

synchronous or asynchronous requests. This needs to be

enhanced so that a new type of request can be made.

This new type is the Killed request.

type Data_Type is (Killed, Synchronous, Asynchronous);

The gateway procedure Quit sets the gateway state to

Killed and the Check entry is enhanced to return the Killed

request if called in the Killed state.

procedure Quit is

begin

 State := Killed;

end Quit;

entry Check (The_Data_Type : out Data_Type)

when (State = Busy) or else

 (State = Killed) or else

 (The_Messages.Count > 0) is

begin

 if State = Killed then

 The_Data_Type := Killed;

 elsif The_Messages.Count > 0 then

 The_Data_Type := Asynchronous;

 elsif State = Busy then

 The_Data_Type := Synchronous;

 end if;

end Check;

The server can then use this request type as an indication

that it should exit the otherwise infinite processing loop.

loop

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 select

 Gateway.Check (The_Data_Type);

 case The_Data_Type is

 when Killed =>

 Gtk.Widget.Destroy

 (Gtk.Widget.Gtk_Widget(The_Main_Window));

 exit;

 when Synchronous =>

 …

 when Asynchronous =>

 …

 end case;

 end select;

end loop;

Note that this is also where the server destroys the main

window that it created just before calling the start-up

procedure.

7 The OSX restriction

Under MS-Windows and Linux, the server can be a

standard Ada task; usually created in the package body.

Unfortunately under OSX the thread that executes the Gtk

calls must be the main thread of the process.

This tedious restriction means that the server has to be

implemented as a procedure (which we call Execute – see

below for details) that is called from the main thread and

returns only when the GUI has been closed down.

To help synchronise start-up and shutdown we

implemented our server procedure to include two

procedures passed as parameters, one that is called

immediately after the server is able to accept requests and

the other that is called in response to the GUI being closed

down.

Both of these procedures are executed in their own

dedicated tasks so that they can better interact with the Gtk

server.

Typically the start-up procedure is used to start GUI related

tasks and to create the GUI objects, whilst the shutdown

procedure is used to terminate these tasks.

procedure Execute (

 Startup_Routine : access procedure

 (Window : Gtk.Window.Gtk_Window);

 Termination_Routine : access procedure);

150 Using GtkAda in Pract ice

Volume 38, Number 3, September 2017 Ada User Journal

7.1 Start-up

The server procedure creates the main Gtk window. It then

creates the start-up task with the user supplied start-up

procedure passed as its parameter. It then waits for the task

to start by making a rendezvous with it, at which time it

passes the previously created main Gtk window. After the

rendezvous it executes the server code described

previously.

task type Startup (Startup_Routine : access procedure

 (Window : Gtk.Window.Gtk_Window))

is

 entry Start (Window : Gtk.Window.Gtk_Window) ;

end Startup;

type Startup_Ptr is access Startup;

Startup_Task : Startup_Ptr;

task body Startup is

 The_Main_Window : Gtk.Window.Gtk_Window;

begin

 accept Start (Window : Gtk.Window.Gtk_Window) do

 The_Main_Window := Window;

 end Start;

 Startup_Routine.all (The_Main_Window);

end Startup;

procedure Execute (

 Startup_Routine : access procedure

 (Window : Gtk.Window.Gtk_Window);

 Termination_Routine : access procedure)

is

 The_Main_Window : Gtk.Window.Gtk_Window;

begin

 Gtk.Window.Gtk_New (The_Main_Window);

 Startup_Task := new Startup (Startup_Routine);

 Startup_Task.Start (The_Main_Window);

 while Gtk.Main.Events_Pending loop

 Unused_Boolean := Gtk.Main.Main_Iteration;

 end loop;

 … -- remainder of server

7.2 Termination

Early in the execution of the server procedure, a

termination task is created.

task type Termination_Handler is

 entry Start;

 entry Finalize;

end Termination_Handler;

The server then connects a function to the delete-event of

the main window.

package Window_Callback is new

 Gtk.Handlers.Return_Callback

 (Gtk.Window.Gtk_Window_Record, Boolean);

 Window_Callback.Connect (The_Main_Window,

 "delete-event",

 Close_Window'access);

The connected function is called when the main window of

the GUI is closed.

function Close_Window (Unused : access

 Gtk.Window.Gtk_Window_Record'class)

return Boolean is

begin

 The_Termination_Handler.Start;

 return True; -- Don't destroy the main window.

end Close_Window;

This function starts the server termination task by making a

rendezvous at its Start entry. Note that the function returns

True to indicate to Gtk that the window should not be

destroyed. This is so that the termination routine can still

access the window in order that it can retrieve information

before the window is actually closed and the information

lost. For example its size and position on screen.

task body Termination_Handler is

begin

 accept Start;

 The_Termination_Routine.all;

 Callback_Handling.Finish;

 accept Finalize;

 Gateway.Quit;

end Termination_Handler;

The termination task waits to be started then executes the

termination routine supplied by the client. When this is

finished it causes the callback task to terminate. It waits for

the callback task to rendezvous at its Finalize entry to make

sure that all the action routines have been executed before it

finally closes the window and terminates the Gtk server by

calling the Gateway Quit entry.

8 Downloads

A working example of a Gtk server package as described in

this article may be downloaded from our web site

www.white-elephant.ch

We cordially invite readers to comment and suggest

improvements and/or corrections. We do not consider

ourselves to be in any way knowledgeable with regard to

Gtk or GtkAda and so would very much appreciate

feedback.

Acknowledgements

We would like to acknowledge the work done by

Dmitry A. Kazakov and Maxim Reznik in their GtkAda

Contributions.

 (http://www.dmitry-kazakov.de/ada/gtkada_contributions)

The work presented in this article was inspired by and

derived from ideas implemented by Dmitry and Maxim in

the afore-mentioned work.

However our implementation differs from theirs in that our

Gtk server blocks (with timeout) waiting for requests rather

than periodically processing pending requests using a timer

and that our implementation of asynchronous requests uses

a queue.

In our experience using a queue and a select with timeout

greatly increases the performance of the GUI.

http://www.white-elephant.ch/

